Главная
Новости
Статьи
Строительство
Ремонт
Дизайн и интерьер
Строительная теплофизика
Прочность сплавов
Основания и фундаменты
Осадочные породы
Прочность дорог
Минералогия глин
Краны башенные
Справочник токаря
Цементный бетон




11.08.2022


10.08.2022


10.08.2022


10.08.2022


10.08.2022


10.08.2022


09.08.2022





Яндекс.Метрика

Брауэр, Лёйтзен Эгберт Ян

27.06.2022


Лёйтзен Эгберт Ян Брауэр (нидерл. Luitzen Egbertus Jan Brouwer; 27 февраля 1881 — 2 декабря 1966) — голландский философ и математик, выпускник университета Амстердама, работавший в таких областях математики, как топология, теория множеств, математическая логика, теория меры и комплексный анализ.

Член Нидерландской АН в Амстердаме (1912), член-корреспондент Лондонского королевского общества, Парижской и Гёттингенской АН, профессор Амстердамского университета (1912—1951). В 1932 г. он получил звание рыцаря ордена Нидерландского льва.

Положил начало новому направлению в математике — интуиционизму. Он подверг сомнению неограниченную приложимость в математических рассуждениях классических законов исключённого третьего, (снятия) двойного отрицания, косвенного доказательства (доказательства от противного). Одним из результатов анализа таких рассуждений явилось возникновение интуиционистской логики, сформулированной в 1930 г. учеником Брауэра А. Гейтингом и не содержащей указанных законов.

Биография

Родился 27 февраля 1881 г. в Оверши, сегодня это пригород Роттердама в Голландии. Друзья звали его по второму имени Бертус. Будучи очень способным, Брауэр в 14 лет окончил полную школу в Хоорне, городе на озере Зюйдерзее к северу от Амстердама.

Он не изучал в школе греческого и латыни, однако оба языка были необходимы для поступления в университет, так что следующие два года Брауэр посвятил их изучению. В этот период времени его семья переезжает в Харлем, к западу от Амстердама. Здесь же в 1897 г. в гимназии он сдал вступительные экзамены в университет Амстердама.

Профессором математики в Амстердамском университете у Брауэра был Кортвег, который быстро понял, что в лице Брауэра он имеет выдающегося студента. Ещё в самом начале обучения Брауэр получил оригинальные результаты о непрерывных движениях в 4-мерном пространстве, и Кортвег обескуражил его предложением о публикации. Статья вышла, и Брауэр получил первую публикацию в Королевской академии наук в Амстердаме в 1904. Кроме того, Брауэр интересовался топологией и основаниями математики. Он не только изучал эти разделы в университете, но и сам читал массу литературы по этим вопросам.

Брауэр окончил университет в 1904 г. и в том же году женился на Лизе де Холл, которая была на 11 лет старше его и имела дочь от первого брака. После заключения брака, который не принёс детей, Брауэр с женой и приёмной дочерью переехал в Бларикум, недалеко от Амстердама. Через три года Лиза получила квалификацию фармацевта, и Брауэр помог ей в организации книготорговой фирмы по снабжению книгами магазинов химических товаров. Между тем Брауэр не был в восторге от приёмной дочери, и отношения между ними были натянутыми.

С самого начала Брауэр интересовался философией математики, а также был очарован мистицизмом и другими философскими вопросами, относящимися к человеческому обществу. В 1905 году он опубликовал свои идеи в книге, которая имела заголовок «Жизнь, искусство и мистика» (Leven, Kunst, en Mystiek).

В 1909 г. он стал приват-доцентом Амстердамского университета. В своей инаугурационной речи 12 октября 1909 г. «О природе геометрии» он развернул свою исследовательскую программу. Несколько месяцев спустя он предпринял важную поездку в Париж в канун рождества 1909 г., где встретился с Пуанкаре, Адамаром и Борелем. Основываясь на дискуссиях в Париже, он начал работать над проблемой инвариантности пространственных измерений.

С 1904 года Брауэр последовательно проводил критику так называемых чистых математических доказательств существования, опирающихся на логический принцип исключённого третьего, что в конечном счёте положило начало целому направлению в обоснованиях математики математическому интуиционизму.

Однако независимую от философии интуиционизма ценность имеет проведённый Брауэром анализ математических доказательств существования с точки зрения конструктивного построения тех объектов, существование которых доказывается. В частности, А. Н. Колмогоровым было показано, что правила так называемой интуиционистской логики находят своё реальное осуществление в логике конструктивного решения математических проблем.

В 1912 г. Брауэр был избран действительным членом Королевской академии наук в Амстердаме. В том же году он получил позицию экстраординарного профессора теории множеств, теории функций и аксиоматики в Амстердамском университете. Эту должность он занимал до ухода на пенсию в 1951 году.

В 1919 г. Гильберт попытался соблазнить его местом в Геттингене, в том же году ему предлагали место в Берлине. Несмотря на заманчивость этих предложений, Брауэр отказался. (Возможно, этот выбор в пользу Амстердама в определённой степени объяснялся влиянием Ван дер Вардена, который учился в Амстердамском университете в 1919—1923 гг. и был слушателем Брауэра.)

Несмотря на то, что ему не удалось повернуть математиков на свой путь мышления, Брауэр был широко признан в мире за свой выдающийся вклад. Он являлся действительным членом Королевской академии наук в Амстердаме, Лондонского королевского общества, Гёттингенской академии наук, получил степень почётного доктора Университета Осло в 1929 г. и Кембриджского университета в 1954 г. В 1932 г. он получил звание Рыцаря ордена Нидерландского льва.

В 1935 году Брауэр учредил журнал Compositio Mathematica.

Погиб в 1966 г. в Бларикюме в результате автокатастрофы.

Научный вклад

В 1911—1913 гг. Брауэр установил ряд важных понятий и результатов в области топологии. В их числе:

  • понятия симплициальной аппроксимации и степени непрерывного отображения;
  • понятие гомотопической классификации отображений;
  • теорема о гомотопической эквивалентности двух отображений (сферы на себя), имеющих одну и ту же степень;
  • теорема об инвариантности числа измерений и инвариантности внутренних точек (при топологическом отображении множества, лежащего в n-мерном пространстве, в это же пространство);
  • теорема о неподвижной точке;
  • n-мерная теорема Жордана.

Эти результаты и методы, найденные для их доказательства, определили значительное влияние Брауэра на развитие топологии в период между 1-й и 2-й мировыми войнами.

Признание

  • В его честь учреждена международная медаль Нидерландского математического общества, присуждаемая раз в три года.
  • В 1970 г. Международный астрономический союз присвоил имя Лёйтзена Эгберта Яна Брауэра (совместно с Дирком Брауэром) кратеру на обратной стороне Луны.
Имя:*
E-Mail:
Комментарий: