Остаток ряда




Главная
Новости
Статьи
Строительство
Ремонт
Дизайн и интерьер
Строительная теплофизика
Прочность сплавов
Основания и фундаменты
Осадочные породы
Прочность дорог
Минералогия глин
Краны башенные
Справочник токаря
Цементный бетон




23.01.2021


21.01.2021


20.01.2021


20.01.2021


20.01.2021


20.01.2021


18.01.2021





Яндекс.Метрика
         » » Остаток ряда

Остаток ряда

18.12.2020


Ряд, полученный отбрасыванием от исходного n первых членов, называется n-м остатком ряда.

Обозначение:

r n = ∑ k = n + 1 ∞ a k {displaystyle r_{n}=sum _{k=n+1}^{infty }a_{k}}

Все члены, кроме тех, что входят в n-й остаток ряда, в сумме дают т. н. n-ю частичную сумму ряда.

Свойства

Для остатка ряда справедливы следующие утверждения:

  • Если ряд сходится, то сходится любой его остаток.
  • Если хотя бы один остаток ряда сходится, то и сам ряд сходится.
  • Если ряд сходится, то
  • lim n → ∞ ∑ k = n + 1 ∞ a k = 0 {displaystyle lim _{n o infty }sum _{k=n+1}^{infty }a_{k}=0}

    Существуют способы оценки остатка ряда с помощью интегрального признака Коши (для знакоположительного ряда) и Признака сходимости Лейбница (для знакочередующегося ряда).